
DATA PROCESSING IN

EXASCALE-CLASS

COMPUTER SYSTEMS

Chuck Moore

AMD Corporate Fellow &

Technology Group CTO

April 27, 2011

The Salishan Conference on
High Speed Computing

LANL / LLNL / SNL

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 2

EXASCALE SYSTEM CHALLENGES

 DARPA study (2008) identified four major
challenges:

– Energy and Power challenge

– Memory and Storage challenge

– Concurrency and Locality challenge

– Resiliency challenge

 All of these require deep consideration in
the design of the compute nodes, the
system-level fabric and the programming
model

 Today’s talk will focus on the compute
nodes and the associated programming
model

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 3

Transistors

(thousands)

Single-thread

Performance

(SpecINT)

Frequency

(MHz)

Typical Power

(Watts)

Number of

Cores

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten

Dotted line extrapolations by C. Moore

35 YEARS OF MICROPROCESSOR TREND DATA

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 4

Three Eras of Processor Performance

Single-Core
Era

S
in

g
le

-t
h
re

a
d

P
e
rf

o
rm

a
n
c
e

?

Time

we are
here

o

Enabled by:
 Moore’s Law
 Voltage Scaling
 MicroArchitecture

Constrained by:
Power
Complexity

Multi-Core
Era

T
h
ro

u
g
h
p
u
t

 P
e
rf

o
rm

a
n
c
e

Time
(# of Processors)

we are
here

o

Enabled by:
 Moore’s Law
 Desire for Throughput
 20 years of SMP arch

Constrained by:
Power
Parallel SW availability
Scalability

Heterogeneous
Systems Era

T
a
rg

e
te

d
 A

p
p
li
c
a
ti
o
n

P
e
rf

o
rm

a
n
c
e

Time
(Data-parallel exploitation)

we are
here

o

Enabled by:
 Moore’s Law
 Abundant data parallelism
 Power efficient GPUs

Currently constrained by:
Programming models
Communication overheads

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 5

Shared Level 3 Cache

TECHNICALLY POSSIBLE HPC NODE FOR 2018

Shared Level 3 Cache

Memory Controllers, Prefetch, Compression

Integrated Northbridge Controller

DIMM

DIMM

DIMM

DIMM

DIMM

DIMM

DIMM

DIMM

32-64 GB Stacked DRAM
Memory

High Speed

Interconnect

(40-100Gbs each)

~8 High
Perf x86

Cores

~10 TFlop

Vector
Units

1st Level Packaging Boundary

Checkpoint
Storage

PCM

NIC

200-250W

ECC

Server-class RAS Server-class RAS

Systems
Management

Port
uC

M$ M$ M$ M$

Concept represents engineering capability only,
and is not intended as a product roadmap

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 6

Challenge: Nested Data Parallelism

i=0
i++

load x(i)
fmul
store

cmp i (1000000)
bc

…

…

…

…

i,j=0
i++
j++

load x(i,j)
fmul
store

cmp j (100000)
bc

cmp i (100000)
bc

2D array
representing
very large

dataset

Loop 1M
times for
1M pieces

of data

Coarse-grain data
parallel Code

Maps very well to
discrete GPU type

data parallel engines

i=0
i++

load x(i)
fmul
store

cmp i (16)
bc

…

…

Loop 16 times for 16
pieces of data

Fine-grain data
parallel Code

Maps very well to
integrated SIMD

dataflow (SSE/AVX)

Nested data
parallel Code

Lots of conditional data
parallelism

Benefits from closer
coupling (CPU & GPU)

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 7

GPU COMPUTE OFFLOAD – 3 PHASES
A

r
c
h

it
e
c
tu

r
e
 M

a
tu

r
it

y
 &

P

r
o

g
r
a
m

m
e
r
 A

c
c
e
s
s
ib

il
it

y

P
o

o
r

E
x
c
e
ll
e
n

t

2012 - 2020

Fusion System
Architecture

Peer-based APIs

 Targeted for mainstream
programmers

 Full C++ support

 GPU is a 1st-class part of
the system architecture
(not a device)

 Single unified & coherent
address space

 Generalized user-level
runtime queuing structure

 Support for Nested Data
Parallel programs

 Logical extension of OCL

 Support for pre-emption
and OS-driven context
swapping

Architected Era

2009 - 2011

OCL/DC
Driver-based APIs

 Expert programmers only

 “C and C++ like”

 Exploit more compute
centric APIs & data types

 Multiple address spaces &
explicit data movement

 Specialized work queue
based structures

 Concurrent GFX and
compute offload capable

Standards
Drivers Era

2002 - 2008

Graphics & Proprietary
Driver-based APIs

 “Hacker” programmers only

 Exploit early programmable
“shader cores” in the GPU

 Make your program look
like “graphics” to the GPU

 CUDA, Brook+, etc

Proprietary
Drivers Era

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 8

WHAT IS THE FUSION SYSTEM ARCHITECTURE (FSA)?

Foundation of AMD’s heterogeneous compute platform strategy

Enables data intensive applications to run on the most appropriate
processor for the best possible performance and power

Enables parallel task queuing runtimes to access the GPU directly
and embrace heterogeneous computing

Introduces an architected interface to drive the next platform
standard for heterogeneous computing

Continues to evolve and improve the standards based driver
model for graphics, video and computing with discrete GPUs

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 9

MORE FSA DETAILS …

… WILL ALL BE RELEASED AT :

AMD’s FUSION DEVELOPER SUMMIT

June 13-16, 2011 in Seattle, WA

Execution Model

Memory Model

ABI Specifications

Runtime Environment Specifications

Programming Examples for OpenCL
and DirectX11TM

And, much more …

AMD Fusion Developer
Summit

June 13-16, 2011
Seattle, WA, USA

For more information: www.amd.com/afds

http://www.amd.com/afds

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 10

 Designed to support parallel task queuing runtimes

– TBB, ConcRT, Grand Central

– Allows programmers to manage tasks, not threads

– Load balances through work stealing

 Architected Queuing Model

– CPU -> CPU (already there)

– CPU -> GPU (offload interface)

– GPU -> GPU (recursion, tree traversal)

– GPU -> CPU (syscalls, IO)

 GPU support for function pointers, recursion, exceptions, etc

 User mode queuing

– Low latency dispatch directly from applications

– GPU hardware processes queues from multiple processes in round robin
manner

– Progress notifications written directly to memory and employ standard
OS signaling

– No new CPU instructions required

FSA EXECUTION MODEL OVERVIEW

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 11

TASK QUEUING RUNTIME ON CPUS

Key:

 Work-Stealing

CPU
Worker

Q

CPU
Worker

Q

CPU
Worker

Q

CPU
Worker

Q

CPU CPU CPU CPU

Key: CPU Threads

GPU Threads

Memory

Work-Stealing

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 12

TASK QUEUING RUNTIME ON THE FSA PLATFORM

Key: CPU Threads

GPU Threads

Memory

Work-Stealing

CPU
Worker

Q

CPU
Worker

Q

CPU
Worker

Q

CPU
Worker

Q

GPU
Manager

Q

GPU CPU CPU CPU CPU

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 13

TASK QUEUING RUNTIME ON THE FSA PLATFORM

…

Memory

Key:
S
I
M
D

CPU Threads

GPU Threads

Memory

S
I
M
D

S
I
M
D

S
I
M
D

CP

S
I
M
D

Work-Stealing

CPU
Worker

Q

CPU
Worker

Q

CPU
Worker

Q

CPU
Worker

Q

GPU
Manager

Q

Dispatcher

CPU CPU CPU CPU

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 14

DRIVER AND FSA SOFTWARE STACKS

AMD user mode component

AMD kernel mode component

All others contributed by third parties or AMD

Hardware - APUs, CPUs, GPUs

Domain Libraries

OpenCL,DX Runtimes,

User Mode Drivers

Graphics Kernel Mode

Driver

Apps
Apps

Apps
Apps

Apps
Apps

Task Queuing Libraries

(ConcRT, GCD, TBB etc)

FSA Kernel

Mode Driver

FSA Runtime

FSA Domain Libraries

Apps
Apps

Apps
Apps

Apps
Apps

FSA

JIT

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 15

PROGRAMMING AT SCALE (100K NODES!)

• Reality: Different hardware technologies present different
characteristics in the full system design

– NUMA – Latency, BW, coherency support

– Networking Tiers – Variable communication, synch, data movement costs

– Reliability

• Some of these can be flattened out with brute force increased cost

– Not always practical or desirable to do so …

• The balance of these differences are presented to SW

– Glass half empty: Programmability, performance or both suffer

– Glass half full: Fast time-to-functionality; then, gradual optimization
opportunity as needed

• Abstractions that present these realities in simple ways are needed:

– Locality

– Optimized Communications: PGAS extended addressing

– RAS support and non-disruptive checkpointing

– Resource and systems management @ scale (system hypervisor)

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 16

COMMONALITIES BETWEEN MEGA-DATACENTERS

AND SUPERCOMPUTERS?

Attribute Mega-Datacenter Supercomputer Commonality?

Scale 10K 100K nodes 10K 100K nodes Maybe

Workload diversity
Moderate, but almost all
integer processing

Moderate, but almost all
floating point processing

No

Top optimization
priorities

1. TCO (CapEx and OpEx)
2. Throughput/W/$$

1. Sustained FLOPs
2. TCO

Yes -- TCO

Node-level power 10’s of Watts 100’s of Watts
No -- Power
Density

Memory BW & Cap High Very High Yes

Interconnect BW Working towards 100GbE Working towards 1 Tbps Maybe

Interconnect
Topology

Embrace Tiers w/ natural
parallelism boundaries

Desire as Flat as possible No -- Costs

Programming
model

Exploit natural parallelism
to build fast response time
Map/Reduce, Hadoop

MPI, OpenMP, OpenCL (!) Maybe

Power
Provisioning

Close proximity to cheap
power

Close proximity to electric
power generation facilities

Yes

Cooling
Sophisticated heat flow
engineering

Sophisticated heat flow
engineering

Yes

Dealing w/
Failures

Fail-in-place; self recovering
algorithms

Working towards extensive
checkpointing

Maybe

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 17

SUMMARY AND CONCLUDING REMARKS

• 10+TFLOP processing nodes for Exascale-class Supercomputers are
within reach by 2018

– TSV Stacked Memory Reasonable Memory Bandwidth (0.1B/FLOP)

– 15nm, 11nm, 8nm CMOS Roadmap CPU & Large GPU integration

– Balance Leading edge x86 sequential and GPU/Vector machines

• Full system architectures, such as AMD’s Fusion System Architecture,
will help make GPU/Vector programming approachable by more people

– Unified system address space A pointer is a pointer

– X86-based page tables throughout User-level Task Parallel Runtimes

– Reduced overhead of offload Finer granularity offload

• Modern Mega-datacenters share some of the same problems as the
upcoming class of Supercomputers

– The MDC guys have HUGE financial motivations for continuing to mature
this technology

– Alignment is well advised

Data Processing in Exascale-class Computing Systems | April 27, 2011 | CRM 18

DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical
inaccuracies, omissions and typographical errors.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN
THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT,
INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in
the United States and/or other jurisdictions. Other names used in this presentation are for identification
purposes only and may be trademarks of their respective owners.

©2011 Advanced Micro Devices, Inc. All rights reserved.

